Kulite has over 400 Patents to date!
Recent Patent Approvals
Patent Title: Systems and methods for compensating the effects of absolute pressure in differential pressure sensors Patent No.: 11,162,862 Date of Patent: November 2, 2021 Abstract:A pressure transducer is disclosed that includes an absolute pressure sensor assembly, a differential pressure sensor assembly, a main pressure port in communication with the absolute pressure sensor assembly and the differential pressure sensor assembly, a reference pressure port in communication with the differential pressure sensor assembly, and a compensation circuit in communication with the absolute pressure sensor assembly and the differential pressure sensor assembly. The compensation circuit is configured to reduce an error in an output of the differential pressure sensor assembly ( due to absolute pressure) by at least a portion of an output received from the absolute pressure sensor assembly.
Patent Title: Pressure transducer assembly with selectable damping inserts
Patent No.: 11,060,935 Date of Patent: July 13, 2021 Abstract:A reconfigurable pressure transducer assembly having an input tube filter assembly is provided. The resonant frequency and dampening characteristics associate with the pressure transducer assembly may be configured by the input tube filter assembly. The input tube filter assembly includes one or more inserts disposed in an input tube channel, the one or more inserts including one or more bores of selectable dimensions and extending therethrough from a first end to a second end. The one or more inserts define an effective input tube bore, and the input tube filter assembly is tunable by selection of the selectable dimensions of the one or more inserts.
Patent Title: Field serviceable, small form-factor pressure scanner
Patent No.: 10,969,289 Date of Patent: April 6, 2021 Abstract:The disclosed technology relates to a field serviceable pressure scanner suitable for high-pressure sensing applications and replacement of large pressure transmitter panels. The pressure scanner includes a housing having a mounting plate comprising a plurality of through-hole bores extending from a front to back side for mating with corresponding transducer ports of the pressure sensors, and a plurality of input ports disposed on the front side of the mounting plate and in communication with the corresponding plurality of through-hole bores. The pressure scanner assembly includes two or more field-replaceable (swappable) pressure sensors seal mounted to the back side of the mounting plate, each pressure sensor comprising one or more sensor ports, each of the one or more sensor port in communication with corresponding through-hole bores in the mounting plate, and a multi-channel data acquisition system configured to receive pressure signals from the two or more field-replaceable pressure sensors.
Patent Title: Sensor having thermal gradients
Patent No.: 10,942,076 Date of Patent: March 9, 2021 Abstract:The invention is an improved sensor assembly including a housing; a first header and a second header coupled to the housing; a first transducer coupled to the first header and a second transducer coupled to the second header. The first transducer is configured to measure a first pressure to generate a first pressure signal. The second transducer is configured to measure a second pressure to generate a second pressure signal. The first transducer and the second transducer are positioned in the housing such that a first temperature of the first transducer is about equivalent to a second temperature of the second transducer during operation of the sensor assembly.
Patent Title: High temperature protected wire bonded sensors Patent No.: 10,871,415 Date of Patent: December 22, 2020 Abstract:
Systems and methods are disclosed for packaging sensors for use in high temperature environments. In one example implementation, a sensor device includes a header; one or more feedthrough pins extending through the header; and a sensor chip disposed on a support portion of the header. The sensor chip includes one or more contact pads. The sensor device further includes one or more wire bonded interconnections in electrical communication with the respective one or more contact pads and the respective one or more feedthrough pins. The sensor device includes a first sealed enclosure formed by at least a portion of the header. The first sealed enclosure is configured for enclosing and protecting at last the one or more wire bonded interconnections and the one or more contact pads from an external environment.
Patent Title: Lowpass resonator and particulate filter for a pressure transducer Patent No.: 10,837,854 Date of Patent: November 17, 2020 Abstract:
The disclosed technology includes a transducer assembly having a first transducer element. The transducer assembly includes a first filter element adjacent to least of portion of the first transducer element such that a first cavity is defined between the first filter element and the first transducer element. The first filter element includes a plurality of machined passageways in communication with the first cavity. The transducer assembly also includes an inlet passage having a first end in communication with a first external portion of the transducer assembly and a second end in communication with the plurality of machined passageways.
Patent Title: Methods of fabricating silicon-on-insulator (SOI) semiconductor devices using blanket fusion bonding Patent No.: 10,825,719 Date of Patent: November 3, 2020 Abstract:
A method for fabricating silicon-on-insulator (SOI) semiconductor devices, wherein the piezoresistive pattern is defined within a blanket doped layer after fusion bonding. This new method of fabricating SOI semiconductor devices is more suitable for simpler large scale fabrication as it provides the flexibility to select the device pattern/type at the latest stages of fabrication.
Patent Title: Sensor header assembly for increased reliability in high-pressure environments
Patent No.: 10,788,386 Date of Patent: September 29, 2020 Abstract:Header construction and techniques are disclosed that utilize header layers that provide support for electrical interconnections. A sensor header assembly includes: an upper header layer having upper through holes arranged in a first configuration; a lower header layer having lower through holes arranged in a second configuration axially offset relative to the first configuration; depressions extending from the lower header layer top surface and partially through the lower header layer, each depression defining a footprint corresponding to the first configuration of the corresponding upper through holes of the upper header layer; upper header pins extending through the corresponding upper through holes and at least partially into the corresponding lower level depressions; and lower header pins extending through the corresponding lower through holes and in electrical communication with the corresponding upper header pins.
Patent Title: Pressure scanner assemblies having replaceable sensor plates
Patent No.: 10,768,068 Date of Patent: September 8, 2020 Abstract:A pressure scanner assembly having at least one replaceable sensor plate, wherein each of the replaceable sensor plates has at least one pressure sensor adapted to transmit a signal substantially indicative of a sensed pressure condition. A memory chip, which stores correction coefficients for each of the pressure sensor to compensate for thermal errors, may be installed on each of the replaceable sensor plates. The signals from the pressure sensors are multiplexed and may be outputted in analog or digital form. The pressure scanner assemblies described herein have sensor plates that can be interchanged with other sensor plates of the same or different pressure range without disrupting the electronic configuration of the pressure scanner assembly or having to recalibrate and/or update the memory chip installed thereon.
Patent Title: Two lead electronic switch system adapted to replace a mechanical switch system
Patent No.: 10,749,516 Date of Patent: August 18, 2020 Abstract:Systems and methods are disclosed for a two lead electronic switch adapted to replace a mechanical switch. In one embodiment, a device is provided that includes a sensor and an electronic circuit having a voltage limiting circuit. The electronic circuit is configured to deactivate/activate the voltage limiting circuit to operate the electronic circuit in a first/second state in response to determining that an output of the sensor is less/more than a threshold voltage. The circuit includes first and second terminals configured to receive a switch voltage used to provide power for the device. The device sets the switch voltage to a first voltage level operative to power the electronic circuit and the sensor while the electronic circuit is operating in the first state and to a second voltage level operative to power the electronic circuit and the sensor while the electronic circuit is operating in the second state.
Patent Title: Systems and methods for extending frequency response of resonant transducers
Patent No.: 10,697,827 Date of Patent: June 30, 2020 Abstract:Certain implementations of the disclosed technology may include systems and methods for extending a frequency response of a transducer. A method is provided that can include receiving a measurement signal from a transducer, wherein the measurement signal includes distortion due to a resonant frequency of the transducer. The method includes applying a complementary filter to the measurement signal to produce a compensated signal, wherein applying the complementary filter reduces the distortion to less than about +/?1 dB for frequencies ranging from about zero to about 60% or greater of the resonant frequency. The method further includes outputting the compensated signal.
Patent Title: Self-heated pressure sensor assemblies
Patent No.: 10,656,036 Date of Patent: May 19, 2020 Abstract:The present invention provides a self-heated pressure sensor assembly and method of utilizing the same. The self-heated pressure sensor assembly regulates and maintains the temperature of the pressure sensor, regardless of the external temperature environment, without an external heater as in prior art embodiments. Exemplary embodiments of the pressure sensor assembly incorporate a resistance heater that is built into the sensing chip of the pressure sensor assembly. The pressure sensor assembly also utilizes the resistance of the pressure sensing elements to monitor the temperature of the assembly, which works alongside the resistance heater to maintain a stable temperature within the pressure sensor assembly.
Patent Title: Systems and methods for switched multi-transducer pressure sensors and compensation thereof
Patent No.: 10,634,570 Date of Patent: April 28, 2020 Abstract:Systems and methods are disclosed for a switched, multiple range sensor system including multiple transducers. In one embodiment, a method is provided that includes receiving and measuring at a first transducer and a second transducer, a pressure to generate a respective first and second pressure signal; amplifying the first and second pressure signals with corresponding first and second fixed-gain amplifier to generate first and second amplified pressure signals; selecting for monitoring, the first or second amplified pressure signal; converting the selected amplified pressure signal to an intermediate digital pressure signal; measuring, at a thermal sensor associated with the selected amplified pressure signal, a temperature; compensating, based on the measured temperature, the intermediate digital pressure signal to generate a compensated digital pressure output signal; and outputting the compensated digital pressure output signal.
Patent Title: Pressure sensor having a Helmholtz resonator
Patent No.: 10,620,073 Date of Patent: April 14, 2020 Abstract:This disclosure provides example methods, devices, and systems for a sensor having a Helmholtz resonator. In one embodiment, a system may comprise a sensing element; a header coupled to the sensing element; a housing coupled to the header; an adapter coupled to the housing; a screen disposed in an opening of the housing, wherein a first cavity is disposed between the screen and the sensing element and a second cavity is disposed between the adapter and the sensing element, and the screen in combination with the first cavity and the second cavity form a Helmholtz resonator.
Patent Title: Systems and methods for electrically identifying and compensating individual pressure transducers
Patent No.: 10,620,075 Date of Patent: April 14, 2020 Abstract:Certain implementations of the disclosed technology may include systems, methods, and apparatus for assigning a distinct identifier (ID) to a pressure transducer based on resistor values. Embodiments include electrically identifying the distinct ID, and compensating the pressure transducer based on the distinct ID. According to an example implementation, a method is provided that can include coupling a transducer ID measurement assembly with a transducer assembly; measuring, by the transducer ID measurement assembly, a plurality of divided voltages between a plurality of configurable ID switches and a reference resistor; determining, with a processor, a distinct ID associated with the transducer assembly based on the plurality of measured divided voltages; retrieving one or more compensation parameters based on the distinct ID; and compensating, with the one or more compensation parameters, a measurement signal of the transducer assembly.
Patent Title: High-temperature headers for sensing elements
Patent No.: 10,605,685 Date of Patent: March 31, 2020 Abstract:Certain implementations of the disclosed technology include systems and methods for providing header assemblies for use with pressure sensors in high-temperature environments. Certain example implementations include a header assembly. The header assembly can include a header portion having a first side and a second side, the header portion including one or more bores extending through the header portion from the first side to the second side. In certain example implementations, one or more platinum header pins are disposed within and extending through the one or more bores of the header portion. In certain example implementations, the header assembly can include one or more brazing portions corresponding to the one or more platinum header pins. In certain example implementations, the platinum header pins are configured for electrical communication with corresponding electrodes of a leadless transducer element.
Patent Title: Sensor having thermal gradients
Patent No.: 10,302,516 Date of Patent: November 7, 2019 Abstract:This disclosure provides example methods, devices, and systems for a sensor having thermal gradients. In one embodiment, a system may comprise a sensor assembly including a housing; a first header and a second header coupled to the housing; a first transducer coupled to the first header, wherein the first transducer is configured to measure a first pressure to generate a first pressure signal; a second transducer coupled to the second header, wherein the second transducer is configured to measure a second pressure to generate a second pressure signal; and wherein the first transducer and the second transducer are positioned in the housing such that a first temperature of the first transducer is about equivalent to a second temperature of the second transducer during operation of the sensor assembly.
Patent Title: Header assembly for a pressure sensor
Patent No.: 10,451,511 Date of Patent: October 22, 2019 Abstract:A header assembly for a pressure sensor and methods for manufacturing and using the same are provided. In one example embodiment, a header insert may include a base; a hollow protrusion coupled to the base and having a metalized inner surface and a metalized outer surface, wherein the metalized outer surface of the hollow protrusion is used to couple to a header and the metalized inner surface of the hollow protrusion is used to couple to a header pin; and wherein a seal is formed between the header, the header insert and the header pin.
Patent Title: Systems and methods for multibit code communications
Patent No.: 10,387,352 Date of Patent: August 20, 2019 Abstract:Certain implementations of the disclosed technology may include systems and methods for multibit code communications that can provide more than one bit per input port. In an example implementation, a method is provided that can include measuring an input voltage at an input port in communication with a device. The method can include comparing the measured input voltage with a plurality of predetermined reference voltage levels, and determining, based on the comparing, a device ID. The method can further include outputting the device ID. Certain implementations may further include compensating a signal associated with the device based on the identified device ID.
Patent Title: Sensor having thermal gradients
Patent No.: 10,371,590 Date of Patent: August 6, 2019 Abstract:This disclosure provides example methods, devices, and systems for a sensor having thermal gradients. In one embodiment, a system may comprise a sensor assembly including a housing; a first header and a second header coupled to the housing; a first transducer coupled to the first header, wherein the first transducer is configured to measure a first pressure to generate a first pressure signal; a second transducer coupled to the second header, wherein the second transducer is configured to measure a second pressure to generate a second pressure signal; and wherein the first transducer and the second transducer are positioned in the housing such that a first temperature of the first transducer is about equivalent to a second temperature of the second transducer during operation of the sensor assembly.
Patent Title: High temperature protected wire bonded sensors
Patent No.: 10,436,662 Date of Patent: August 2, 2017 Abstract:Systems and methods are disclosed for packaging sensors for use in high temperature environments. In one example implementation, a sensor device includes a header; one or more feedthrough pins extending through the header; and a sensor chip disposed on a support portion of the header. The sensor chip includes one or more contact pads. The sensor device further includes one or more wire bonded interconnections in electrical communication with the respective one or more contact pads and the respective one or more feedthrough pins. The sensor device includes a first sealed enclosure formed by at least a portion of the header. The first sealed enclosure is configured for enclosing and protecting at last the one or more wire bonded interconnections and the one or more contact pads from an external environment.
Patent Title: Lowpass resonator and particulate filter for a pressure transducer
Patent No.: Patent number: 10,330,553 Date of Patent: June 25, 2019 Abstract:The disclosed technology includes a transducer assembly having a first transducer element. The transducer assembly includes a first filter element adjacent to least of portion of the first transducer element such that a first cavity is defined between the first filter element and the first transducer element. The first filter element includes a plurality of machined passageways in communication with the first cavity. The transducer assembly also includes an inlet passage having a first end in communication with a first external portion of the transducer assembly and a second end in communication with the plurality of machined passageways.
Patent Title: Sealed transducer with external adjustment port
Patent No.: Patent number: 10,309,850 Date of Patent: June 4, 2019 Abstract:Certain implementations of the disclosed technology may include systems, methods, and apparatus for a sealed transducer with an adjustment port. The sealed transducer may include one or more terminals. A first terminal may include electrical connections for connecting to an input voltage source, a ground, and for providing a transducer output signal. A second terminal, for example, may include an electrical port for connecting to an external and separately sealed adjustment network. In one example implementation, the adjustment network can include one or more components configured to couple with internal circuitry of the transducer to alter a response of the transducer.
Patent Title: Pressure sensor having an adapter joined with a screen for dimensional tolerance control Patent No.: Patent number: 10,295,426 Date of Patent: May 21, 2019 Abstract:
This disclosure provides example methods, devices, and systems for a sensor having a front seal. In one embodiment, a system may comprise a sensing element; a header coupled to the sensing element; a housing coupled to the header; a screen joined to an adaptor and coupled to the housing, wherein a first gap separates the adaptor and the sensing element and a second gap separates the adaptor and the header; and wherein a stress applied at a front surface of the adaptor is transferred to the housing, and the first gap is used to isolate the sensing element from the stress and the second gap is used to isolate the header from the stress.
Patent Title: Methods of fabricating silicon-on-insulator (SOI) semiconductor devices using blanket fusion bonding Patent No.: 10,256,138 Date of Patent: April 9, 2019 Abstract:
Method for fabricating silicon-on-insulator (SOI) semiconductor devices, wherein the piezoresistive pattern is defined within a blanket doped layer after fusion bonding. This new method of fabricating SOI semiconductor devices is more suitable for simpler large scale fabrication as it provides the flexibility to select the device pattern/type at the latest stages of fabrication.
Patent Title: Two-dimensional material-based accelerometer
Patent No.: 10,228,387 Date of Patent: March 12, 2019 Abstract:This disclosure provides systems and methods for a two-dimensional material-based accelerometer. In one embodiment, an accelerometer comprises a substrate; a membrane suspended over an opening in the substrate to form a suspended membrane, wherein the membrane is composed of a two-dimensional material; a mass structure coupled to the suspended membrane; and wherein the mass structure distorts the suspended membrane about a first axis in response to an applied acceleration providing a first change in a conductance of the suspended membrane so that the applied acceleration along the first axis can be detected.
Patent Title: Systems and methods for liquid dynamic pressure testing Patent No.: 10,215,656 Date of Patent: February 26, 2019 Abstract:
Certain implementations of the disclosed technology may include systems and methods for dynamic pressure testing of transducers in communication with a liquid. A method is provided that can include dynamically pressurizing a liquid in a cavity associated with a housing. While dynamically pressurizing the liquid, the method includes simultaneously measuring: a change in volume of the liquid; a test frequency response, by a test transducer in communication with the liquid; and a reference frequency response, by a reference transducer in communication with the liquid. The method may further determine a normalized frequency response of the test transducer, based at least in part on the test frequency response and the reference frequency response. The method may further provide an indication of the normalized frequency response of the test transducer and an indication of the bulk modulus of the liquid.
Patent Title: Trimmable links for selectively setting transducer impedance Patent No.: 10,215,651 Date of Patent: February 26, 2019 Abstract:
Systems and methods are disclosed herein for selectively configuring an impedance of a transducer. A configurable transducer system is provided that can include a first region configured for receiving an applied stress and one or more sensing branches in communication with the first region. Each sensing branch can include an active piezoresistive area; three or more conduction paths configured in electrical communication with the active piezoresistive area; one or more trimmable links configured in parallel communication with at least two of the three or more conduction paths; and two or more connection terminals in electrical communication with the three or more conduction paths. The trimmable links are configured to be selectively opened to set a value of nominal impedance associated with the active piezoresistive area based on a desired impedance of the configurable transducer.
Patent Title: Structure for controlling tension on a threaded header Patent No.: 10,197,458 Date of Patent: February 5, 2019 Abstract:
The invention is an improved header and corresponding port associated with a transducer assembly. The header and port define mating threaded portions, thread stop portions, and a weld gap region. The thread stop portions are configured to mate and maintain a pre-loading tension between the threaded portions during and after applying a weld in the weld gap region. The weld gap region is configured to have a predetermined gap distance such that the weld seals the transducer without stress in the weld. The mating of the first and second thread stops are configured to maintain at least a portion of the pre-loading tension.
Patent Title: Self-heated pressure sensor assemblies Patent No.: 10,184,853 Date of Patent: January 22, 2019 Abstract:
The present invention provides a self-heated pressure sensor assembly and method of utilizing the same. The self-heated pressure sensor assembly regulates and maintains the temperature of the pressure sensor, regardless of the external temperature environment, without an external heater as in prior art embodiments. Exemplary embodiments of the pressure sensor assembly incorporate a resistance heater that is built into the sensing chip of the pressure sensor assembly. The pressure sensor assembly also utilizes the resistance of the pressure sensing elements to monitor the temperature of the assembly, which works alongside the resistance heater to maintain a stable temperature within the pressure sensor assembly.
Patent Title: High-temperature headers for sensing elements Patent No.: 10,119,877 Date of Patent: November 6, 2018 Abstract:
Certain implementations of the disclosed technology include systems and methods for providing header assemblies for use with pressure sensors in high-temperature environments. Certain example implementations include a header assembly. The header assembly can include a header portion having a first side and a second side, the header portion including one or more bores extending through the header portion from the first side to the second side. In certain example implementations, one or more platinum header pins are disposed within and extending through the one or more bores of the header portion. In certain example implementations, the header assembly can include one or more brazing portions corresponding to the one or more platinum header pins. In certain example implementations, the platinum header pins are configured for electrical communication with corresponding electrodes of a leadless transducer element.
Patent Title: Pressure transducer structures suitable for curved surfaces
Patent No.: US 10,048,139
Date of Patent: August 14, 2018
Abstract:
A flexible transducer structure suitable for attaching to a curved surface such as the leading edge of an aircraft wing is provided. In one example embodiment, a method may include receiving, at a sensor disposed on a flexible sheet, a pressure, wherein the sensor is electrically coupled to a conductive trace disposed on the flexible sheet; measuring, by the sensor, the pressure to generate a pressure signal; outputting, by the sensor, to the conductive trace, the pressure signal, wherein the conductive trace extends away from the sensor on the flexible sheet; and wherein the flexible sheet is adaptable to conform to a contour of a curved surface.
Patent Title: Pressure sensor having a front seal
Patent No.: US 9,964,460
Date of Patent: May 8, 2018
Abstract:
This disclosure provides example methods, devices, and systems for a sensor having a front seal. In one embodiment, a system may comprise a sensing element; a header coupled to the sensing element; a housing coupled to the header; a screen joined to an adaptor and coupled to the housing, wherein a first gap separates the adapter and the sensing element and a second gap separates the adapter and the header; and wherein a stress applied at a front surface of the adapter is transferred to the housing, and the first gap is used to isolate the sensing element from the stress and the second gap is used to isolate the header from the stress.
Patent Title: Systems and methods for optical measurements using multiple beam interferometric sensors
Patent No.: US 9,952,067
Date of Patent: April 24, 2018
Abstract:
The disclosed technology may include systems, methods, and apparatus for optical measurements. A method is provided that includes receiving, by first and second Extrinsic Fabry-Perot Interferometer (EFPI) sensors, respective portions of interrogation light. The first EFPI sensor is responsive to a measurement stimulus and both the first EFPI sensor and the second EFPI sensor are responsive to a common mode stimulus. The method includes detecting a measurement signal and a first common-mode signal responsive to receiving altered interrogation light from the first EFPI sensor, the measurement signal corresponding to the measurement stimulus. The method includes detecting a second common mode signal responsive to receiving altered light from the second EFPI sensor. The method includes producing a measurement output signal, the measurement output signal representing a difference between the second common mode signal and a combination of the measurement signal and the first common-mode signal, and outputting the measurement output signal.
Patent Title: Two wavelength optical interferometric pressure switch and pressure transducers
Patent No.: US 9,945,740
Date of Patent: April 17, 2018
Abstract:
Certain implementations of the disclosed technology may include Fabry-Perot Interferometer (FPI)-based sensors systems and methods for measuring a desired stimulus. In accordance with an example implementation of the disclosed technology, a method is provided for receiving, by a Fabry-Perot Interferometer (FPI) sensor, first interrogation light having a first wavelength and second interrogation light having a second wavelength. The FPI sensor is configured to alter the received first interrogation light and the second interrogation light responsive to a measurement stimulus. The method includes detecting, by a first optical detector, a measurement signal responsive to receiving the altered first interrogation light and the altered second interrogation light from the FPI sensor, the measurement signal corresponding to the measurement stimulus. The method includes producing a measurement output signal, the measurement output signal representing an intensity of the measurement signal. The method further includes outputting the measurement output signal.
Patent Title: Electronic device interconnections for high temperature operability
Patent No.: US 9,917,067
Date of Patent: March 13, 2018
Abstract:
Systems and methods are disclosed for providing an interconnection for extending high-temperature use in sensors and other electronic devices. The interconnection includes a semiconductor layer; an ohmic contact layer disposed on a first region of the semiconductor layer; an insulating layer disposed on a second region of the semiconductor layer, where the second region differs from the first region; a metal layer disposed above at least the insulating layer and the ohmic contact layer; and a connecting conductive region disposed on the metal layer and in vertical alignment with a third region of the semiconductor layer. The third region differs from the first region and is offset from the ohmic contact layer at the first region. The offset is configured to extend an operational lifetime of the interconnection apparatus, particularly when the interconnection apparatus is exposed to high temperature environments.
Patent Title: High temperature transducer using SOI, silicon carbide or gallium nitride electronics
Patent No.: US 9,915,578
Date of Patent: March 13, 2018
Abstract:
There is disclosed a high temperature pressure sensing system which includes a SOI, silicon carbide, or gallium nitride Wheatstone bridge including piezoresistors. The bridge provides an output which is applied to an analog to digital converter also fabricated using SOI, silicon carbide, or gallium nitride materials. The output of the analog to digital converter is applied to microprocessor, which microprocessor processes the data or output of the bridge to produce a digital output indicative of bridge value. The microprocessor also receives an output from another analog to digital converter indicative of the temperature of the bridge as monitored by a span resistor coupled to the bridge. The microprocessor has a separate memory coupled thereto which is also fabricated from SOI, silicon carbide, or gallium nitride materials and which memory stores various data indicative of the microprocessor also enabling the microprocessor test and system test to be performed.
Patent Title: Three-lead electronic switch system adapted to replace a mechanical switch
Patent No.: US 9,906,216
Date of Patent: February 27, 2018
Abstract:
This disclosure provides example methods, devices, and systems for a three-lead electronic switch system adapted to replace a mechanical switch. A device is disclosed that includes a sensor, a current limiting circuit, an output switching circuit comprising a first switching device and a second switching device, and a three lead interface circuit in communication with the output switching circuit and the current limiting circuit. The device includes an electronic switching circuit in communication with the sensor, the current limiting circuit, and the output switching circuit. The electronic switching circuit is configured to drive the first and second switching devices in complementary conduction states responsive to determining the output of the sensor relative to a threshold voltage. The output switching circuit includes a first terminal, a second terminal, and a return terminal that are configured to provide power to the electronic switching circuit while providing an indication of the conduction states.
Patent Title: Systems and methods for liquid dynamic pressure testing
Patent No.: US 9,897,506
Date of Patent: February 20, 2018
Abstract:
Certain implementations of the disclosed technology may include systems and methods for dynamic pressure testing of transducers in communication with a liquid. A method is provided that can include dynamically pressurizing a liquid in a cavity associated with a housing. While dynamically pressurizing the liquid, the method includes simultaneously measuring: a change in volume of the liquid; a test frequency response, by a test transducer in communication with the liquid; and a reference frequency response, by a reference transducer in communication with the liquid. The method may further determine a normalized frequency response of the test transducer, based at least in part on the test frequency response and the reference frequency response. The method may further provide an indication of the normalized frequency response of the test transducer and an indication of the bulk modulus of the liquid.